
Thorsten Ball 

November 2024 

thorstenball.com

Writing Tucan
Writing an Optimizing Compiler in Rust

http://thorstenball.com


2016



2018



2020



Tucan
• Optimizing compiler in Rust 

• 18k lines of code, 0 third-party dependencies 

• IR is a Control-Flow Graph in SSA form 

• Optimizations 

◦ Dead Code Elimination 

◦ Sparse Conditional Constant Propagation 

◦ Dominator-based Value Numbering 

◦ Useless control-flow elimination 

• Liveness analysis to compute live sets 

• Linear scan register allocator 

• x86-64 code generation 

• Immix heap with GC



No:

• Language design 

• Fancy type systems 

• Novel implementation strategies 

• Building the perfect system

Yes:

• Figuring out how an optimizing 
compiler works



Lessons Learned



The bird’s name is Toucan

(But, hey: in German it’s “Tukan”)



Lexing & Parsing



Dominik Inführ’s JIT compiler
Dora



Lesson: 

Copy & 
Pasting & 
Deleting
… can kickstart projects



SSA
Static Single-Assignment

(From Markus Denker’s Intro to SSA)

https://marcusdenker.de/talks/08CC/08IntroSSA.pdf


All the cool kids have it

• Rust 

• LLVM 

• Go 

• LuaJIT 

• PyPy 

• WebKit



Should be easy, right?



Lesson: 

SSA ain’t SSA







Lesson: 

You have to 
read the code



Lesson: 

You have to 
read the 
slides





Lesson: 

Papers aren’t meant to teach 
Textbooks aren’t meant to teach 

They are meant to share knowledge



Lesson: 
ASCII graphs are awesome









Code Generation



Relatively 
straightforward

• Emit x86 ASM 

• Assemble with GCC



Lesson: 
Debuggability is precious

(A lesson one might have to learn multiple times)



Register Allocation

Or: My Darkest Hour



It’s hard







Liveness Analysis



regalloc: Just a 150 line function



Lesson: 
I can do hard things?



Bonus Lesson







Lesson: 
Even experts make mistakes



Optimizations



Optimizations



Lesson: 
Rust !❤ Graph Manipulation



Uh, oh









Time to bring out the 
big guns



Tree-sitter grammars



Tree-sitter grammars

Works in Zed and Neovim



Integration tests







(Stole it from Go)



Two lessons: 

1. Keep thinking “how will I debug this?” 
2. Invest in debug tooling



Runtime & GC



Immix







Lesson: 
Reference implementations are 
amazing











Lesson: 
Put stuff out into the world



The biggest lesson



Thank you


